Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems
نویسندگان
چکیده
The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other.
منابع مشابه
Face Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملFace recognition by fusing thermal infrared and visible imagery
Thermal infrared (IR) imagery offers a promising alternative to visible imagery for face recognition due to its relative insensitive to variations in face appearance caused by illumination changes. Despite its advantages, however, thermal IR has several limitations including that it is opaque to glass. The focus of this study is on the sensitivity of thermal IR imagery to facial occlusions caus...
متن کاملFace Recognition under Pose and Expresivity Variation Using Thermal and Visible Images
Many existing works in face recognition are based solely on visible images. The use of bimodal systems based on visible and thermal images is seldom reported in face recognition, despite its advantage of combining the discriminative power of both modalities, under expressions or pose variations. In this paper, we investigate the combined advantages of thermal and visible face recognition on a P...
متن کاملFusion of Multi-Scale Visible and Thermal Images using EMD for Improved Face Recognition
This paper presents the implementation of face recognition system using JDL framework. Fusion of visible and thermal images enhances the recognition rate and efficiency under varying illumination conditions. In this system, registration of visible and thermal images is performed using Fourier based method and fusion is performed using Empirical Mode Decomposition (EMD). The feature extraction a...
متن کاملMultispectral Imaging for Illumination Invariant Face Recognition
Under controlled illumination conditions, visual Face Recognition systems perform well for faces with low or no disguise [1]. Infrared (Thermal) Face Recognition provides an enticing alternative to Visible Face Recognition due to the relative insensitivity of IR imagery to illumination changes and disguise [2]. Image fusion is in fact a combination that extracts redundant and complementary info...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2015